

Leak Test Survey

Pleasant Mount Welding, Inc.

Standard-Duty Aluminum Interlocking Cover
Leak Test Survey
Carbondale, Pennsylvania
ABE Report No. J23-162
Revision (00)
09-Feb-24

Leak Test Survey

09-Feb-24

PROJECT: Pleasant Mount Welding, Inc.

Standard-Duty Aluminum Interlocking Cover

ADDRESS: Carbondale, Pennsylvania

ARCHITECT: -

DATE:

ENGINEER: -

CONTRACTOR: PMWI

NEBB TAB CONTRACTOR: Air Balancing Engineers, Inc.

ADDRESS: 1175 N. Vine Street

Berwick, PA 18603

ADDRESS: Carbondale, Pennsylvania

The data presented in this report is a record of system measurements and final adjustments that have been obtained in accordance with the current edition of the NEBB *Procedural Standard for Testing, Adjusting, and Balancing of Environmental Systems.*

The measurements shown, and the information given, in this report are certified to be accurate and complete, at the time and date information was gathered. For any abbreviations used in this report please refer to the current edition of NEBB Fundamental Formulas.

NEBB TAB CONTRACTOR: Air Balancing Engineers, Inc.

REG. NO. 2412

CERTIFIED BY: BART RADO DATE: 09-Feb-24

SUBMITTED & CERTIFIED BY

NEBB CONTRACTOR: Air Balancing Engineers, Inc. **NEBB**

TAB SUPERVISOR Bart Rado CERTIFICATION

REG. NO. 2412 **SEAL**


EXPIRATION DATE: 31-Dec-24

TESTING/BALANCING REPORT:	PAGE NUMBER
Executive Summary Air Balancing Engineers, Inc. (ABE) Project Summary	1
Scope of Work / Photo No. 1	2
Description of Sample Cover Panels Tested	3 & 4
Required Equipment	4
Leak Test Parameters	4
Test Results / Conclusion	4
Photo No. 2	5
Instrument Calibration Instrument Calibration Report	Appendix 1
Abbreviations ABE Abbreviations Report	Appendix 2
RD Leak Test 2 Cover Layout Drawings	Appendix 3

Filename: 23162 / TOC

		٧E			

On February 9th, 2024, Air Balancing Engineers, Inc. (ABE) performed a "Extruded Aluminum Cover Leak Test" evaluation at the Pleasant Mount Welding, Inc. manufacturing facility in Carbondale, Pennsylvania.

Scope of work included measuring the air leakage rate of a formed flat cover at a specific negative pressure within the tank. Actual leakage rate was compared to the maximum allowable leakage rate. Final Test results yielded an acceptable leakage rate for the Extruded Aluminum Cover Tested during this on-site survey.

Filename: 23162 / GNO

February 9, 2024 ABE Project # 23-162

Extruded Aluminum Cover Leak Test

1. SCOPE:

The objective of this test is to measure the air leakage rate of the Formed Flat Cover at a specific negative (-) pressure within the tank. The test was performed on a "mock—up" tank with the extruded flat cover completely installed. The "mock—up" tank was constructed of plywood with 2'x4' framing (reference photo #1). To make the tank as airtight as possible, the interior of the structure was sealed with an epoxy sealant and the exterior was sealed with plastic and all joints caulked. With the tank made essentially "airtight" the resultant leakage would be that of the extruded aluminum cover. The actual leakage rate of the extruded flat cover was calculated in cubic feet per minute (CFM). The actual leakage rate was compared to the maximum allowance leakage rate.

DESCRIPTION OF SAMPLE COVER PANELS TESTED

There was a total of six (6) cover panels (top mounted) to the PMWI wooden test tank that were evaluated during the leak testing of the PMWI Standard-Duty Aluminum Interlocking Flat Panel Cover system. The wooden tank had inside dimensions of 9'-0" x 9'-0" and the cover panels' overall cover area was determined to be 89.85 square feet (sq ft.) in the top mounted configuration.

The PMWI cover panels leak tested were fabricated from 6061-T6 aluminum extruded components that comprise the PMWI Standard-Duty Aluminum Interlocking Flat Panel Cover system. There are over 20 extruded aluminum components that are included in the Standard-Duty Interlocking Cover system. There are many male and female components that allow the cover system to be configured in a multitude of ways to achieve project specific requirements for loading as well as geometry of the cover system required.

There are standard components of the cover system which typically comprise over 90% of cover systems and those are the parts that were used to fabricate the cover panels used for leak testing. Please reference attached drawing [RD Leak Test 2 Cover Layout Drawing] showing the fabrication of the cover panels.

All Standard-Duty Aluminum Interlocking Cover panels tested used the 6" wide Cover Plank (CS-1) which is the main component comprising each cover panel. This is typically the case for all cover panels. The CS-1 plank extrusion is the main decking component that the cover system is built upon. The CS-1 plank has double interlocking construction with 2 male protrusions on one side and 2 female receptors on the opposite side of each plank. This allows planks and other extruded components to be assembled together to form a rigid cover panel.

The components for the cover panels tested are listed in the Bill of Materials as shown on the attached drawings.

All of the cover panels (assembly callouts "4C1", "4C2" and "4C3") required the use of CS Interlock Edges (CSi-41). The CSi-41 Interlock Edges envelope all the decking components on each side of the panel and are held together by Sikaflex adhesive and aluminum rivets to form rigid cover panels. The Interlock Edges allow the cover panels to be supported by the Interlock Beam (CSi-40w) located at the center of the tank and the Interlock Angles (CSi-44) located at the perimeter of the tank.

Other standard components used to fabricate cover panels include the Interlock Female Handle (CSi-42) at panel-to-panel interfaces, CS Handle Male (CS-18) used at perimeter panels to allow use of Santoprene gaskets at the top mount locations for air seal protection. Also, at panel-to-panel interfaces the 3" Interlock Underlap extrusions are required (CSi-45 Male at one location and the CSi-46 Female at one location). The overlap of the Interlock Handles and the 3" Interlock Underlap components allow cover panels to hold down adjacent cover panels.

The other standard component used on all cover panels is the Interlock Slide Latch assemblies (SL-1 and SL-2) that are contained within the Handles of the system to allow panels to be latched to the support members preventing panel uplift. Also, the Interlock Beams (CSi-40w) and Interlock Angles (CSi-44) provide t-slots for Santoprene gaskets for sealing panels along the edges of cover panels in the direction of the Interlock Edges.

As stated above, the 6061-T6 extruded components used to fabricate the leak test cover panels are a representative configuration for the most commonly assembled cover panels expected to be used in the vast majority of cover applications. Though there are many additional components comprising the Standard-Duty Aluminum Interlocking Cover system, the use of those parts do not adversely impact the capability of the cover system in regards to air leakage of the system. The same air intrusion leak rates would be expected no matter the configuration of an individual cover panel.

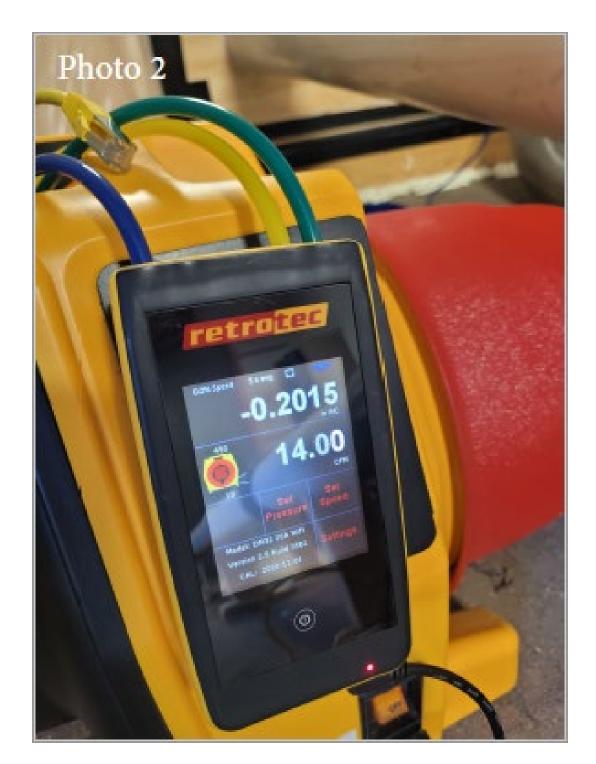
REQUIRED EQUIPMENT:

The following equipment was required to perform the leak test:

- Blower with a capacity of 500 CFM at 1/2- inch w. c. SP.
- Calibrated orifice plates.
- Manometer with graduations of a minimum of 0.01 inches in w. c.
- The equipment used was a Retrotec 400 Series Test Fan Serial Number 4XLF10326 with calibrated orifices and DM-32 Electronic Micromanometer. A series 18 orifice plate was used for testing. Please reference appendix 1 for Certificate of Calibration.

4. LEAK TEST PARAMETERS:

- Depressurize the structure to (-) 0.20 inches w. c. using the aforementioned test fan assembly.
- Maximum allowable leakage shall be 0.20 CFM per square foot of cover area or less.
- Allowable Leakage: 0.20 CFM / Sq. Ft. at 0.20 inches negative pressure. 89.85 sq. ft. x 0.20 CFM / Sq. Ft. = 17.97 Maximum Allowable Leakage


5. LEAK TEST RESULTS:

- Cover size: 9 ft. 5 inches X 9 ft. 9 ½ inches
 Total Overall Area of Cover: 89.85 sq. ft.
- Actual Test Pressure: (-) .2015 in. wc
- Actual Leakage: 14.00 CFM
- Actual CFM leakage per square foot of cover panel: 0.1558 CFM / Sq. Ft. (14.00 CFM / 89.85 Sq. Ft.= 0.1558 CFM / Sq. Ft.)
- Reference photo #2 for image of leak test results.

6. CONCLUSION:

Test results indicate a LEAKAGE RATE of **0.1558 CFM / Sq. Ft.** which is less than the MAXIMUM allowable leakage rate of **0.20 CFM / Sq. Ft.** indicating the aluminum cover panels tested are acceptable and below the maximum allowable leakage rate.

APPENDIX 1

Instrument Calibration

MANUFACTURER / INSTRUMENT	MODEL NO.	SERIAL NO.	CALIBRATION TEST DATE	CALIBRATION DUE DATE
Retrotec Test Fan	400 Series	4XLF10326	2020-11-04	2025-11-04
restrair				

Certificate of Calibration

Issued by: Retrotec

Calibration Date: **2020-11-04**

Tested in accordance to SMACNA, FD E51-767: Pass

Certificate Number: 202011031304-4XLF10326

Results: As Left

Calibration laboratory

Retrotec 1060 East Pole Road Everson, WA, US 98274 +1 (360) 738-9835

calibration@retrotec.com http://www.retrotec.com

AC-1943

This calibration laboratory has been assessed by the ANSI-ASQ National Accreditation Board and meets the requirements of international standard ISO/IEC 17025. All pressure and flow devices used in this calibration are traceable to the International System of Units (SI), consensus standards, or ratio type measurements through national standards realized and maintained by NIST or an NMI.

Device being calibrated:

Description: Test Fan Manufacturer: Retroted

Manufacturer: Retrotec

Model Number: 400 Series

Shell Serial Number: 4XLF10326

Main Voltage: 120 V
Main Frequency: 60 Hz

Calibrated by: Shelby Zettle

HAMMAN.

Signature

Issued Date: 2020-11-04

Reference Flow:

LFE 2009 Chamber, in accordance with ANSI/AMCA 210-07:

Device Under Test Gauge: DM-32 Gauge Serial number 401969

Reference Gauge: DM-32 Gauge Serial number 405346

LFE 2009 Chamber, in accordance with ANSI/AMCA 210-07: Device Under Test Gauge: **DM-32** Gauge Serial number **401969**

Reference Gauge: DM-32 Gauge Serial number 405308

LFE 2018 (US) Chamber, in accordance with ANSI/AMCA 210-

07:

Device Under Test Gauge: **DM-32** Gauge Serial number **410149**

Reference Gauge: DM-32 Gauge Serial number 412012

LFE 2018 (US) Chamber, in accordance with ANSI/AMCA 210-

07:

Device Under Test Gauge: **DM-32** Gauge Serial number **410149**

Reference Gauge: DM-32 Gauge Serial number 407737

Calibration Information:

The Device was calibrated against laboratory standards whose values are traceable to recognized national standards. The uncertainty represents an expanded uncertainty using a coverage factor of k=2 to approximate a 95% confidence level. In tolerance conditions are based on test results falling within specified limits without taking uncertainty into account. The uncertainty evaluation has been carried out in accordance with ISO/IEC 17025 requirements.

Calibration Procedure: **Procedure ID No.CP-CHB-01**

This calibration applies only to the unit listed on this certificate.

This Calibration Certificate shall not be reproduced except in full, without written approval from Retrotec.

Name	Calibration Expiration Date	Name	Calibration Expiration Date
ISO 9972	2025-11-04	I.S. EN ISO 9972:2015	2022-11-04
CGSB 2002	2025-11-04	ATTMA-TS1	2021-11-04
ASTM-E779	2025-11-04	RESNET	2025-11-04

Page 1 of 3 Calibration Date: 2020-11-04

Certificate of Calibration

Issued by: **Retrotec**Calibration Date: **2020-11-04**

Tested in accordance to SMACNA, FD E51-767: Pass

Certificate Number: 202011031304-4XLF10326

Results: As Left

Calibration Results:

Flow rates are corrected to STP conditions of 20°C, 101.325 kPa, 50% RH and Air Density: 1.19886

Range	Humidity % (RH)	Temp (C)	Barometric Pressure (kPa)	Chamber Pressure (Pa)	Fan Pressure (Pa)	Reference Flow (m³/h)	Fan Flow (m³/h)	Error (%)
74	45.6	22.4	101.400	251.6	257.8	202.44	200.18	1.1%
74	45.9	22.3	101.400	252.7	1008.3	398.23	393.35	1.2%
74	44.4	23.1	101.400	251.0	1564.1	503.47	487.58	3.2%
47	46.1	22.4	101.400	260.8	318.8	89.32	92.75	3.8%
47	46.6	22.2	101.400	249.5	2924.6	283.05	280.70	0.8%
47	45.0	22.8	101.400	251.4	4980.6	368.07	364.32	1.0%
	•					•		
29	48.5	21.6	101.400	253.6	412.8	38.89	39.10	0.6%
29	45.0	22.8	101.400	247.9	2418.8	91.70	91.32	0.4%
29	44.7	22.8	101.400	261.1	4986.3	129.80	129.16	0.5%
				•		·		
18	47.4	21.7	101.400	250.7	667.6	19.13	18.78	1.8%
18	47.7	21.7	101.400	252.1	2651.0	38.23	37.68	1.4%
18	47.3	22.0	101.400	249.8	5016.0	52.74	52.16	1.1%
11	40.9	22.4	101.100	249.4	1357.4	10.82	10.78	0.3%
11	41.3	22.3	101.100	252.5	3085.5	16.82	16.67	0.9%
11	39.4	23.2	101.100	249.1	5052.7	21.65	21.66	0.0%
7	39.1	21.9	101.100	248.3	594.0	2.31	2.32	0.4%
7	40.4	21.3	101.100	245.4	2728.2	5.34	5.30	0.7%
7	38.4	22.3	101.100	251.7	5289.5	7.56	7.60	0.6%
	•					•		
3	49.6	17.4	101.200	249.3	961.3	0.55	0.53	3.3%
3	49.5	18.5	101.200	252.3	2983.8	1.23	1.22	0.8%
3	50.0	18.5	101.200	257.4	5202.9	1.75	1.84	5.3%
74 (Flex)	46.6	21.9	101.400	252.6	273.6	203.25	199.42	1.9%
74 (Flex)	46.7	21.9	101.400	252.2	1038.5	392.83	388.86	1.0%
74 (Flex)	45.0	22.7	101.400	254.2	1586.9	487.83	477.23	2.2%

Calibration and measurement capability (Expanded Uncertainty): Laminar Flow Elements (0.01 to 3300CFM) = 1.4% of reading + 0.11 CFM. Flow Nozzles (10 to 8200CFM) = 1.5% of reading + 78 CFM. The uncertainty statement is based on a 95% confidence interval, using a coverage of 820.

Page 2 of 3 Calibration Date: 2020-11-04

Certificate of Calibration

Issued by: **Retrotec**Calibration Date: **2020-11-04**

Tested in accordance to SMACNA, FD E51-767: Pass

Certificate Number: 202011031304-4XLF10326

Results: As Left

Published Flow Equation Parameters (Units in m³/h):

Range Configuration	n	k	MF (Pa)
74	0.497	12.77	250
47	0.497	5.33	250
29	0.479	2.20	250
18	0.506	0.71	250
11	0.531	0.24	250
7	0.544	0.07	250
3	0.738	0.0033	250
74 (Flex)	0.500	12.17	250

Flow = $P^n x k$

Where P = Fan Pressure in Pascals

Range Configuration	K1	K2	K3
74	0	0.15	0
47	0	0.12	0
29	0	0.15	0
18	0	0.15	0
11	0	0.14	0
7	0	0.08	0
3	0	0.1	0
74 (Flex)	0	0.15	0

Date Format:

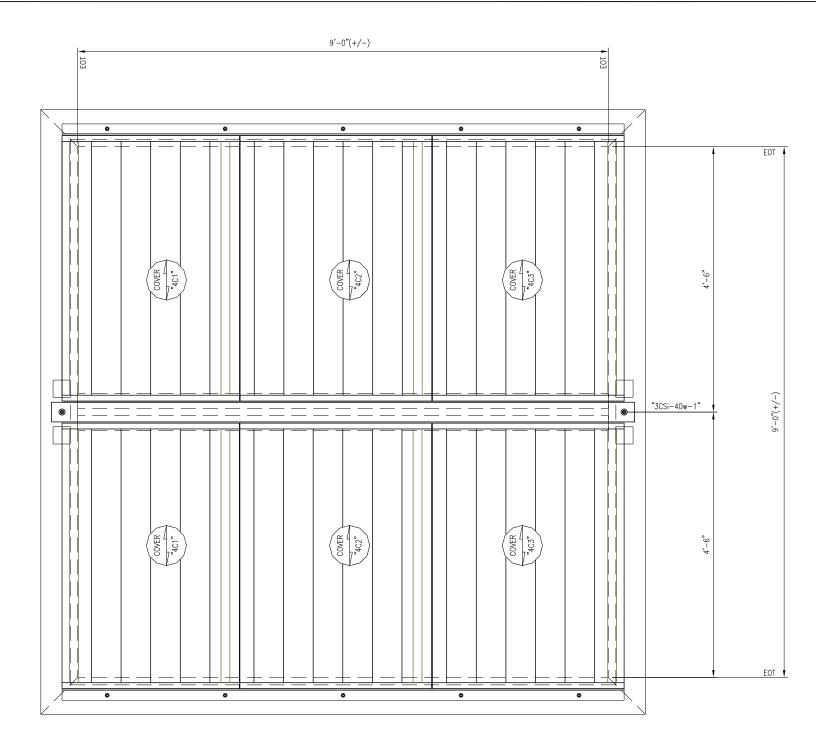
This report adheres to ISO 8601: Data elements and interchange formats - Representation of dates and times. All dates on this report are in the format: YYYY-MM-DD.

End of report

Page 3 of 3 Calibration Date: 2020-11-04

APPENDIX 2

ABE Abbreviations



List of Abbreviations

ACH	Air Changes/Hour	KW	Kilowatt
AC / ACU	Air Conditioning Unit	LAT	Leaving Air Temperature
AF	Air Foil	LFM	Laminar Flow Module
AH / AHU	Air Handling Unit	LD	Linear Diffuser
AMPS	Ampere	LWT	Leaving Water Temperature
BAS	Building Automated System	MAX	Maximum
ВНР	Brake Horsepower	MIN	Minimum
ВІ	Backwards Inclined	MU	Make-Up Water
BTU	British Thermal Unit	MUA	Make-Up Air
BSC	Bio-Safety Cabinet	NA / N/A	Not Applicable
BTUH	BTU per Hour	NAV	Not Available
CC	Coiling Coil	NR	No Requirement
CD	Ceiling Diffuser	OA / OSA	Outside Air
CF	Cubic Feet	OBD	Opposed Blade Damper
CFM	Cubic Feet per Minute	OD	Outside Diameter
CHW	Chilled Water	OP	Operating
CHWR	Chilled Water Return	PD	Pressure Drop
CHWS	Chilled Water Supply	PH	Phase
СТ	Cooling Tower	PRV	Pressure Reducing Valve
CUH	Cabinet Unit Heater	PSI	Pounds per Square Inch
CWR	Condenser Water Return	RA	Return Air
CWS	Condenser Water Supply	RG	Return Grille
DB	Dry Bulb (Temperature)	RH	Relative Humidity
DD	Direct Drive	RLA	Running Load Amps
DDC	Direct Digital Control	RPM	Revolutions per Minutes
DEG	Degree	RR	Return Register
DIA	Diameter	RTU	Roof-Top Unit
Dist.	Distance	SA	Supply Air
DP	Differential Pressure	SCFM	Standard CFM
DWDI	Double Width Double Inlet	SD	Supply Diffuser
EA	Exhaust Air	SF	Supply Fan
EAT	Entering Air Temperature	SG	Supply Grille
EF	Exhaust Fan	SP	Static Pressure
EG	Exhaust Grille	SR	Supply Register
ER	Exhaust Register	SUP	Supply
ERU/ERV	Energy Recovery Unit	SWR	Side Wall Register
ESP	External Static Pressure	SWSI	Single Width Single Insert
EWT	Entering Water Temperature	TBD	To be determined
F	Fahrenheit	TEMP	Temperature
FC	Forward Curve	TON	12,000 BTUH (Cooling Capacity)
FCU	Fan Coil Unit	TSP	Total Static Pressure
FLA	Full Load Amps	TSTAT	Thermostat
FPM	Feet per Minute	T-X	Traverse Test Location I.D. number
FPS	Feet per Second	V	Volts
FT	Feet	V-X	VelGRID Test Location I.D. number
FTR	Fin Tube Radiation	VAV	Variable Air Volume
GPM	Gallons per Minute	VD	Volume Damper
HC	Heating Coil	VEL	Velocity
HD	Head	VER.	Vertical
Horz.	Horizontal	VFD	Variable Frequency Drive
HP	Horsepower	WB	Wet Bulb Temperature
HRU	Heat Recovery Unit	WC	Water Column
HZ	Hertz (Cycles per Second)	W.M.S.	Wire Mesh Screen
ID	Inside Diameter	WSHP	Water Source Heat Pump
IN	Inches	WTD	Water Temperature Difference

APPENDIX 3 R&D LEAK TEST COVER DRAWINGS

PMWI R&D WOODEN TANK

PLAN VIEW

STANDARD-DUTY ALUMINUM INTERLOCKING COVER LAYOUT

CONFIDENTIAL DOCUMENT

ENGINEERING STAMP

ALUMINUM COVER LOADING

LIVE LOAD : 50 psf
DEAD LOAD : 3.5 psf
CONCENTRATED LOAD : 400 #
CONCENTRATED LOAD AREA : 6" x 6" AREA
MAX PANEL WEIGHT : 150 #
DEFLECTION LIMIT : 1/240
REFERENCED CODE : IBC 2012, ASCE 7-10

ALL COVER PANEL COMPONENTS TO BE ALUMINUM TYPE 6061-T6

ALUMINUM FABRICATION NOTES

ALL WELDING TO BE PERFORMED BY CERTIFIED WELDERS FOLLOWING ASME & ALUMINUM ASSOCIATION

FABRICATION SPECIFICATIONS ALL ALUMINUM WELDING SHALL UTILIZE THE **GMAW** PROCESS OR THE **TIG** WELDING PROCESS.

THE GMAW PROCESS SHALL UTILIZE:

1) SHIELDING GAS - 100% PURE ARGON

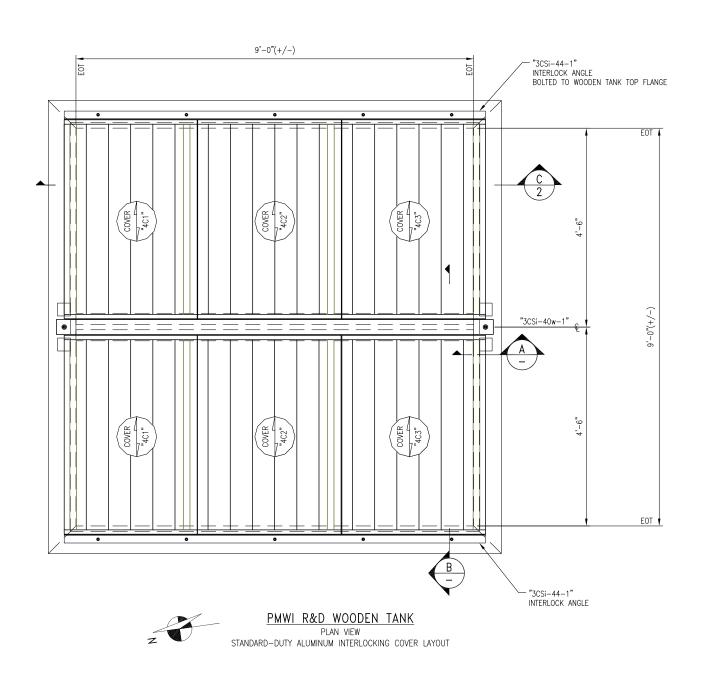
- 1) SHIELDING GAS 100% PURE ARGON
 2) ALL ALUMINUM EXCEPT ANODIZED ALUMINUM FILLER WIRE .045" 4043 (QUALIFIED TO AWS A5.10 ER 4043, ABS, ISO DESIGNATION AISIS)
 3) ANODIZED ALUMINUM FILLER WIRE .045" 5356 (QUALIFIED TO AWS A5.10 ER 5356)
- THE TIG PROCESS SHALL UTILIZE:

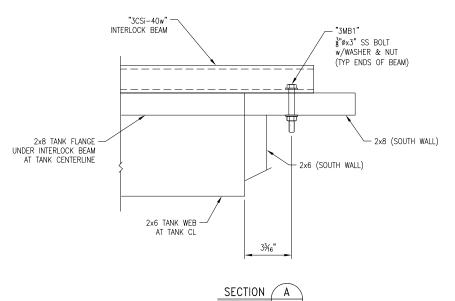
 1) SHIELDING GAS 100% PURE ARGON
- 1) SHIELDING GAS 100% PURE ARGON
 2) FILLER ROD 3356 ALUMINUM ALLOY (QUALIFIED TO AWS AS.10 ER5356)
 ALL HOLES SHALL BE PUNCHED OR DRILLED. ALUMINUM SHAPES SHALL BE ALLOY 6061-T6 U.N.O.
 ALL RE-ENTRANT CORNERS TO BE SHAPED NOTCH-FREE PER AWS D1.2-10 TO A MINIMUM RADIUS OF ½"
 FASTENRES SHALL BE TYPE SS-304 U.N.O.
 COAT ALUMINUM IN CONTACT WITH DISSIMILAR MATERIAL WITH ONE SHOP COAT BITUMASTIC 5 MILS (DFT).

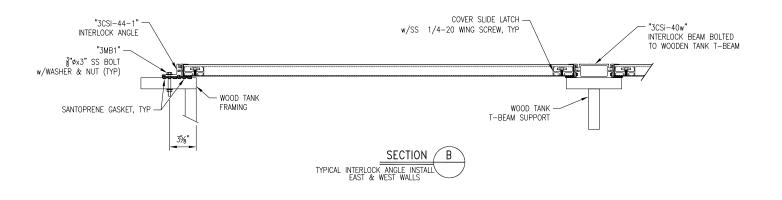
APPROVIAL AUTHORITY: VERIFICATION OF DIMENSIONS, DETAILS, ETC ARE REQUESTED WHITE INDICATED, IF ZACH VERIFICATION IS NOT NOTED OTHERWISE, IT WILL BE ASSOCIATED WITH HELD MODIFICATIONS TO ITEMS DETAILED ON THIS SHEET THAT ARE NOT APPLICABLE TO, DRAWINGS AND WHO HAS ALL THE INFORMATION RECESSARY OF NOTED WHO BEAUS. ON THE STRUCTURE, SINCE HE IS THE ONLY PERSON WHO HAS ALL THE INFORMATION HECESSARY OF PROVIDED WHO BEAUS. ON THE STRUCTURE, SINCE HE IS THE ONLY PERSON. WHO HAS ALL THE INFORMATION HECESSARY OF PROVIDED WHO BEAUS. ON THE STRUCTURE, SINCE HE IS THE ONLY PERSON. WHO HAS ALL THE INFORMATION HECESSARY OF PROVIDED WHO BEAUS. ON THE STRUCTURE, SINCE HE IS THE ONLY PERSON. WHO HAS ALL THE INFORMATION HECESSARY OF PROVIDED WHO BEAUS. ON THE STRUCTURE, SINCE HE IS THE ONLY PERSON. WHO HAS ALL THE INFORMATION HECESSARY OF PROVIDED WHO BEAUS. ON THE STRUCTURE, SINCE HE IS THE ONLY PERSON. WHO HAS ALL THE INFORMATION HECESSARY OF PROVIDED WHO BEAUS. ON THE STRUCTURE, SINCE HE IS THE ONLY PERSON. WHO HAS ALL THE INFORMATION HECESSARY OF PROVIDED WHO BEAUS. ON THE STRUCTURE, SINCE HE IS THE ONLY PERSON. WHO HAS ALL THE INFORMATION HECESSARY OF PROVIDED WHO BEAUS. ON THE STRUCTURE, SINCE HE IS THE ONLY PERSON. WHO HAS ALL THE INFORMATION HECESSARY OF PROVIDED WHO PROVIDED WHO

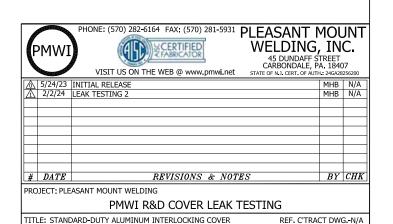
PHONE: (570) 282-6164 FAX: (570) 281-5931 PLEASANT MOUNT

WELDING, INC.


45 DUNDAFF STREET CARBONDALE, PA. 18407

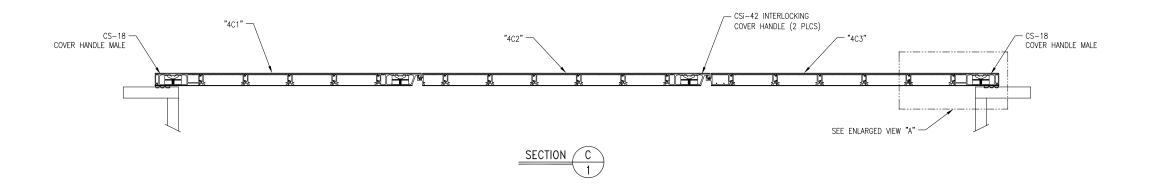

6 5/24/23	INITIAL RELEASE	MHB	N/A
1 2/2/24	LEAK TESTING 2	MHB	N/A
_			
# DATE	REVISIONS & NOTES	BY	CHK

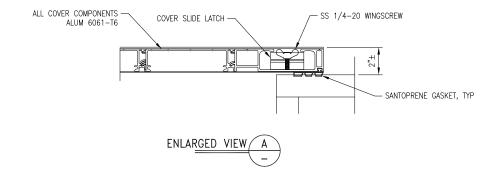

PMWI R&D COVER LEAK TESTING 2

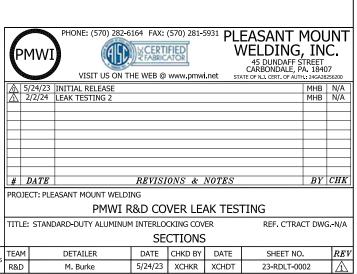

TITLE: STANDARD-DUTY ALUMINUM INTERLOCKING COVER REF. C'TRACT DWG.-N/A

COVER & SUPPORTS ARRANGEMENT PLAN DETAILER DATE CHKD BY DATE SHEET NO. REV M. Burke 5/24/23 XCHKR XCHDT 23-RDLT-0001A

APPROVAL AUTHORITY: VERRICATION IS NOT NOTED OTHERWISE, IT WILL BE ASSUMED CORRECT AS SHOWN.


APPROVAL AUTHORITY: VERRICATION OF DIMENSIONS, DETAILS, ETC ARE REQUESTED THE ENGRER OF RECORD HAS THE FINAL AND TOTAL RESPONSIBILITY FOR THE ADEQUACY AND SAFETY ON THIS SHEET WILL NOT BE ACCEPTED WITHOUT WRITTEN AUTHORITY OR COVERNED BY AISC CODE, NAAMN STANDARDS, THE ALIMINUM ASSOC, WILL BE PROVIDED ON REQUEST.


TEAM DETAILER


DATE CHKD BY DATE SHEET NO. REV
ON THIS SHEET WILL NOT BE ACCEPTED WITHOUT WRITTEN OR COVERNED BY AISC CODE, NAAMN STANDARDS, THE ALIMINUM ASSOC, WILL BE PROVIDED ON REQUEST.

TO FLAMES WILL WARRANT A CHANGE ORDER TO PIMIN.

AUTHORIZATION FROM PIMIN TO PROVIDED ON REQUEST.

APPROVIAL AUTHORITY: VERIFICATION OF DIAMINISON, DETAILS, ETC ARE REQUESTED

APPROVIAL AUTHORITY: VERIFICATION OF DIAMINISON, DETAILS, ETC ARE REQUESTED

APPROVIAL AUTHORITY: VERIFICATION OF DIAMINISON, DETAILS, ETC ARE REQUESTED

APPROVIAL AUTHORITY: VERIFICATION OF DIAMINISON, DETAILS, ETC ARE REQUESTED

APPROVIAL AUTHORITY: VERIFICATION OF DIAMINISON, DETAILS, ETC ARE REQUESTED

APPROVIAL AUTHORITY: VERIFICATION OF DIAMINISON, DETAILS, ETC ARE REQUESTED

OR GOVERNED BY ASS CODE, NAMM STANDARDS, THE ALUMINUM ASSOC,, WILL BE

OR COVERNED BY ASS CODE, NAMM STANDARDS, THE ALUMINUM ASSOC,, WILL BE

OR COVERNED BY ASS CODE, NAMM STANDARDS, THE ALUMINUM ASSOC,, WILL BE

OR COVERNED BY ASS CODE, NAMM STANDARDS, THE ALUMINUM ASSOC, WILL BE

OR COVERNED BY ASS CODE, NAMM STANDARDS, THE ALUMINUM ASSOC, WILL BE

OR COVERNED BY ASS CODE, NAMM STANDARDS, THE ALUMINUM ASSOC, WILL BE

OR COVERNED BY ASS CODE, NAMM STANDARDS, THE ALUMINUM ASSOC, WILL BE

OR COVERNED BY ASS CODE, NAMM STANDARDS, THE ALUMINUM ASSOC, WILL BE

OR COVERNED BY ASS CODE, NAMM STANDARDS, THE ALUMINUM ASSOC, WILL BE

OR COVERNED BY ASS CODE, NAMM STANDARDS, THE ALUMINUM ASSOC, WILL BE

OR COVERNED BY ASS CODE, NAMM STANDARDS, THE ALUMINUM ASSOC, WILL BE

OR COVERNED BY ASS CODE, NAMM STANDARDS, THE ALUMINUM ASSOC, WILL BE

OR COVERNED BY ASS CODE, NAMM STANDARDS, THE ALUMINUM ASSOC, WILL BE

OR COVERNED BY ASS CODE, NAMM STANDARDS, THE ALUMINUM ASSOC, WILL BE

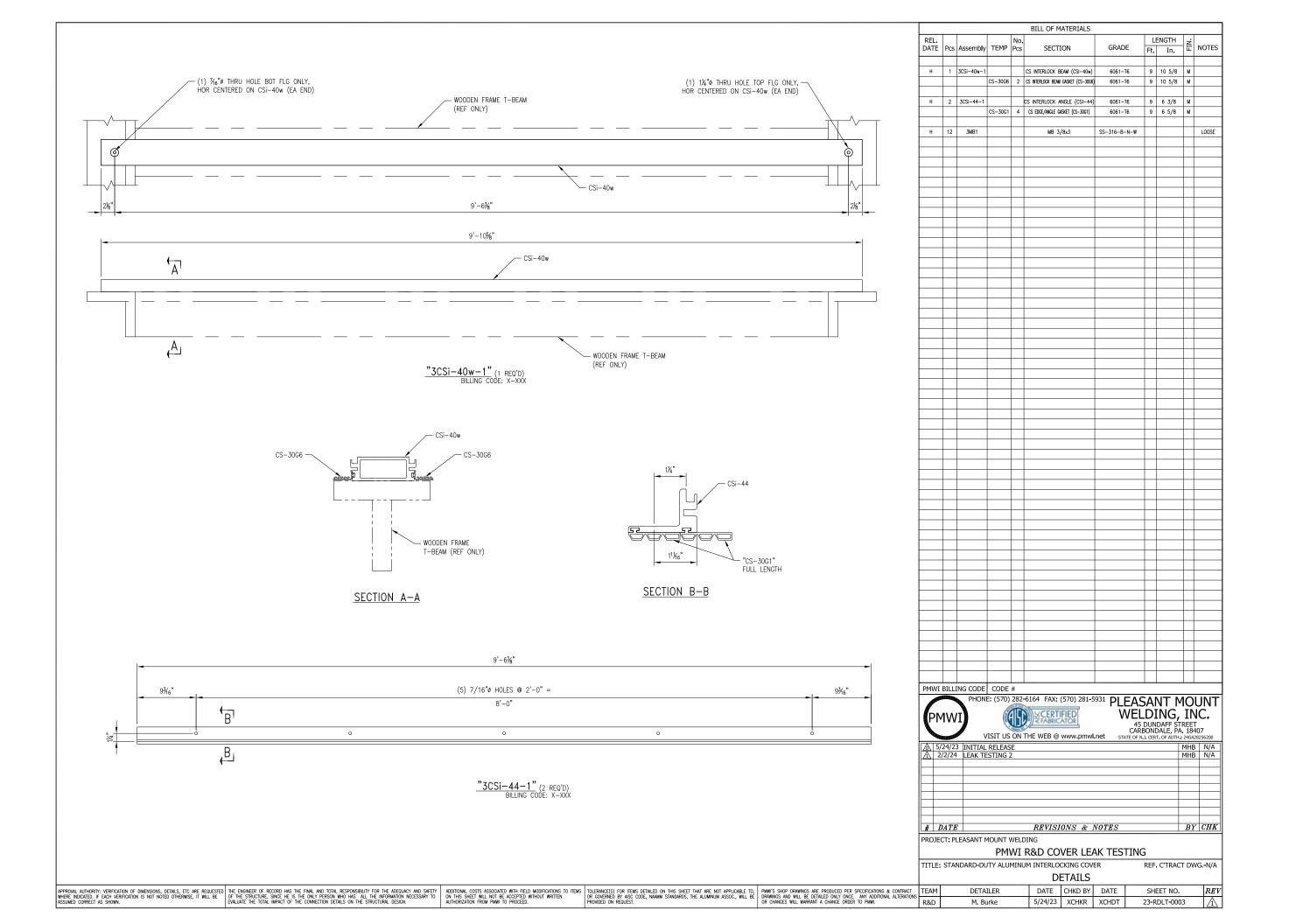
OR COVERNED BY ASS CODE, NAMM STANDARDS, THE ALUMINUM ASSOC, WILL BE

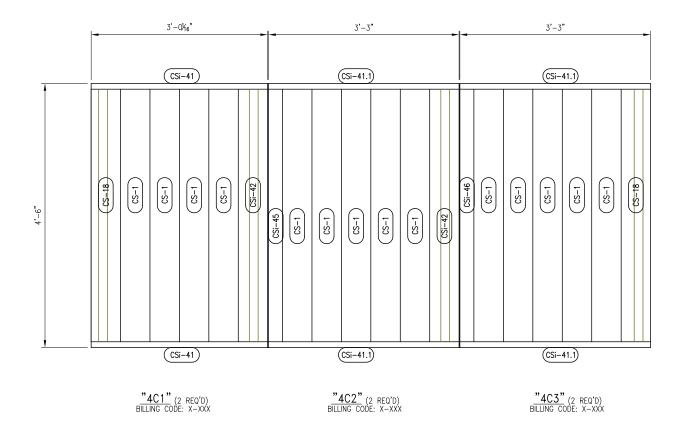
OR COVERNED BY ASS CODE, NAMM STANDARDS, THE ALUMINUM ASSOC, WILL BE

OR COVERNED BY ASS CODE, NAMM STANDARDS, THE ALUMINUM ASSOC, WILL BE

OR COVERNED BY ASS CODE, NAMM STANDARDS, THE ALUMINUM ASSOC, WILL BE

OR COVERNED BY ASS CODE, NAMM STANDARDS, THE ALUMINUM ASSOC, WILL BE


OR COVERNED BY ASS CODE, NAMM STANDARDS, THE ALUMINUM ASSOC, WILL BE


OR COVERNED BY ASS CODE AND ALUMINUM ASSOC, WILL BE

OR COVERNED BY ASS CODE AND ALUMINUM ASSOC, WILL BE

OR COVERNED BY ASS CODE AND ALUMINUM ASSOC, WILL BE

OR COVERNED BY ASS COD

BILL OF MATERIALS LENGTH NOTES REL. DATE PCS Assembly TEMP PCS GRADE SECTION STANDARD COVER 4C1 CS-18 2 CS HANDLE MALE (CS-18) 6061-T6 4 5 | CS-1 | 8 | CS 6" PLANK (CS-1) | 6061-T6 4 5 M CSi-42 2 CS INTERLOCK FEMALE HANDLE (CSi-42) 6061-T6 4 5 CS-30G2 2 CS PLANK GASKET (CS-30G2) SANTOPRENE 4 2 3/4 M CSi-41 4 CS INTERLOCK EDGE (CSi-41) 6061-T6 3 0 1/16 M | SL-1 | 4 | CS INTERLOCK SLIDE LATCH (SL-1) | 6061-T6 | 0 | 2 1/4 | M CS INTERLOCK SLIDE LATCH (SL-2) 6061-T6 0 3 5/8 M | SL-2m | 2 | CS INTERLOCK SLIDE LATCH (SL-2m) | 6061-T6 | 0 | 3 5/8 | M | STANDARD COVER CSi-45 2 CS 3" INTERLOCK UNDERLAP MALE (CSi-45) 6061-T6 4 5 M CS-1 10 CS 6" PLANK (CS-1) 6061-T6 4 5 M CSi-42 2 CS INTERLOCK FEMALE HANDLE (CSi-42) 6061-T6 4 5 M CS-30G5 2 CS INTERLOCK OVERLAP GASKET (CS-30G5) SANTOPRENE 4 5 M CSi-41.1 4 CS INTERLOCK EDGE (CSi-41) 6061-T6 3 3 M SL-1 4 CS INTERLOCK SLIDE LATCH (SL-1) 6061-T6 0 2 1/4 M 4C3 CSi-46 2 CS 3" INTERLOCK UNDERLAP FEMALE (CSi-46) 6061-T6 4 5 M CS-1 10 CS 6" PLANK (CS-1) 6061-T6 4 5 M CS-18 2 CS HANDLE MALE (CS-18) 6061-T6 4 5 CS-30G2 2 CS PLANK GASKET (CS-30G2) SANTOPRENE 4 2 3/4 M CS-30G5 2 CS INTERLOCK OVERLAP GASKET (CS-30G5) SANTOPRENE 4 5 M CSi-41.1 4 CS INTERLOCK EDGE (CSi-41) 6061-T6 3 SL-2 2 CS INTERLOCK SLIDE LATCH (SL-2) 6061-T6 0 3 5/8 M SL-2m 2 CS INTERLOCK SLIDE LATCH (SL-2m) 6061-T6 0 35/8 M H 18 4WS1 WING SCREW 1/4-20x3/4 SS 18-8 H 2 SIKA SIKAFLEX 221 ALUMINUM 10.1oz H 58 4RRIV 1/8x3/8SS-RIVET PMWI BILLING CODE CODE # PHONE: (570) 282-6164 FAX: (570) 281-5931 PLEASANT MOUNT WELDING, INC.

45 DUNDAFF STREET
CARBONDALE, PA. 18407 VISIT US ON THE WEB @ www.pmwi.net STATE OF N.J. CERT. OF AUTH.: 24GA28256200

M	5/24/23	INITIAL RELEASE	МНВ	N/A
Λ		LEAK TESTING 2	МНВ	N/A
\vdash				
	D / (7) D	DELUCIONO A NOMBO	73.7	CITTE
#	DATE	REVISIONS & NOTES	BY	CHK

PROJECT: PLEASANT MOUNT WELDING

PMWI R&D COVER LEAK TESTING

TITLE: STANDARD-DUTY ALUMINUM INTERLOCKING COVER REF. C'TRACT DWG.-N/A

PMWI STANDARD-DUTY COVER PANELS

DETAILER DATE CHKD BY DATE SHEET NO. REV 5/24/23 XCHKR XCHDT 23-RDLT-0004